"NEAR TERM" NEP MISSIONS AND SYSTEMS

Jim Gilland Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio

NUCLEAR PROPULSION OFFICE NEP GOALS

- NASA's Office of Space Science and Applications (OSSA) has identified NEP as first priority on its far term technology needs list to OAST
- NEP systems of interest to OSSA:
 - TRL 5 by ~2000
 - -50 -100 kWe
 - $-\alpha$ < 50 kg/kWe
 - 7 year life
 - High Isp, η
- NPO emphasis is on developing 10 20 kWe ion thrusters, PPU
- MWe NEP effort reduced in scope

PRECEDING PAGE BLANK NOT FILMED

"NEAR TERM" SYSTEMS DEFINITION

- Reactor: SP-100
 - 2.5 MWt
 - 1350 K Outlet Temperature
 - 7 year life
- Radiator
 - Ti/K Heat Pipes
 - 5 10 kg/m² specific mass
 - < 900 K
- PMAD
 - SOA Si Electronics
 - T < 400 K

"NEAR TERM" SYSTEM DEFINITION (cont.)

- Power Conversion
 - Thermoelectrics
 - ~5% efficient
 - 1350 K Hot Shoe Temperature
 - Brayton
 - SOA BRU
 - 20 30% efficient
 - 1050 K TIT
 - Possibility to extend to 1350 K
 - Rankine
 - SOA Moderate Power Reactor Experiment
 - 20% efficient
 - 1100 K TIT
 - Possibility to extend to 1350 K

"NEAR TERM" SYSTEM DEFINITION (cont.)

MPD Thrusters

- 4.7 kg/kWe w/ Power Processing
- Possibility for pulsed operation not yet assessed on a system level
- $Isp \sim 1000 7000 s$
- $-\eta = 0.5$
- Power levels from 100 to 1500 kWe total input power

REPRESENTATIVE NEAR TERM NEP SYSTEMS

PRELIMINARY

- 100 kWe SP-100/TE
 - 1300 K
 - 35 51 kg/kWe
- 500 kWe SP-100/Brayton
 - 1100 K
 - 50.7 kg/kWe
 - 1300 K
 - 35.7 kg/kWe
- 500 kWe SP-100/Rankine
 - 1100 K
 - 21 kg/kWe
 - 1300 K
 - 16.4 kg/kWe

Includes 4.7 kg/kWe MPD thruster subsystem (1 set of thrusters)

NEAR TERM NEP MISSIONS

- Demo Missions (<100 kWe)
 - LEO-GEO
 - Van Allen Belt Science*
 - Lunar Science
 - Lunar Mapper
 - Mars Precursor
 - Interplanetary Robotic
 - Main Belt Asteroid Rendezvous*

*To be discussed in this presentation

NEAR TERM NEP MISSIONS

- Primary Missions (100 1500 kWe)
 - Interplanetary Robotic
 - Neptune Orbiter
 - Jupiter Grand Tour
 - Pluto Orbiter
 - Multiple Main Belt Asteroid Rendezvous
 - Comet Nucleus Sample Return*
 - Space Exploration Initiative Related
 - Lunar Mapper
 - Lunar Cargo
 - Mars Probe
 - Mars Cargo*

*To be discussed in this presentation

DEMO MISSIONS

- Observations Based Upon JPL, NASA LeRC studies
- Mission studies were based on Xe ion thrusters, SP-100 capabilities
- Low power SP-100 (<50 kWe) has high α , up to 200 kg/kWe
- Launch Vehicle constraints: Atlas IIAS, Titan III, Titan
- Possible missions applicable to MPD thrusters:
 - Key factor: Isp ≤ 5000 s
 - Most outer planet missions require lsp of > 7000 s
 - Power ≤ 100 kWe
 - Missions:
 - Comet Nucleus Sample Return
 - Main Belt Asteroid Rendezvous
 - · Van Allen Belt Mapper

PRIMARY MISSIONS

- Observations Based Upon In-house NASA LeRC studies
- Preliminary JPL study also investigated near term Mars missions
- Power levels from 100 to 1500 kWe
- Specific Masses as given previously
- Mars Cargo Results Shown
 - Best and Worst Case SP-100 Dynamic
 - Payloads and initial masses based on 1500 kWe system
 - 1500 kWe = 3 power modules grouped together

NEAR TERM NEP MARS CARGO MISSION

Optimal power, Isp - Trip time includes planetary spirals

NEAR TERM NEP MARS MISSION ANALYSIS

Optimal power, Isp - Trip time includes planetary spirals

NEAR TERM NEP MARS MISSION

1500 kWe, trip time includes planetary spirals

SUMMARY

- Near term missions impose new constraints on NEP technology
 - High specific mass, low power
 - Constrained launch vehicles
 - Increased impact of efficiency, Isp on mission capability
- For near term, <100 kWe missions, lon propulsion is still primary choice based on state of technology and mission capability

SUMMARY (cont.)

- Some missions that could utilize MPD technology have been identified in preliminary fashion
 - Earth orbital
 - Comet, asteroid belt exploration
 - Mars cargo vehicles
- Key assumptions in studies to date
 - 1 set of MPD thrusters lifetime issues
 - 100 500 kWe MPD thrusters can achieve
 - Isp ~ 1000 7000 seconds
 - α ~ 5 kg/kWe
 - η ~ 0.5
 - Development time for MPD matches mission needs